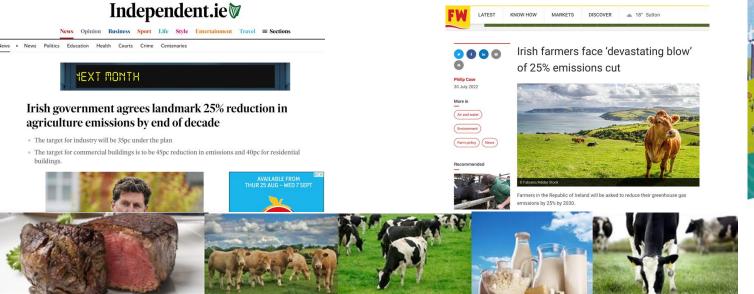
"Strategies to reduce enteric methane emissions from beef cattle"

Dr Stuart Kirwan

Teagasc Grange Animal and Bioscience Research Department

Estonian Beef Breeders Conference

12th October, 2023

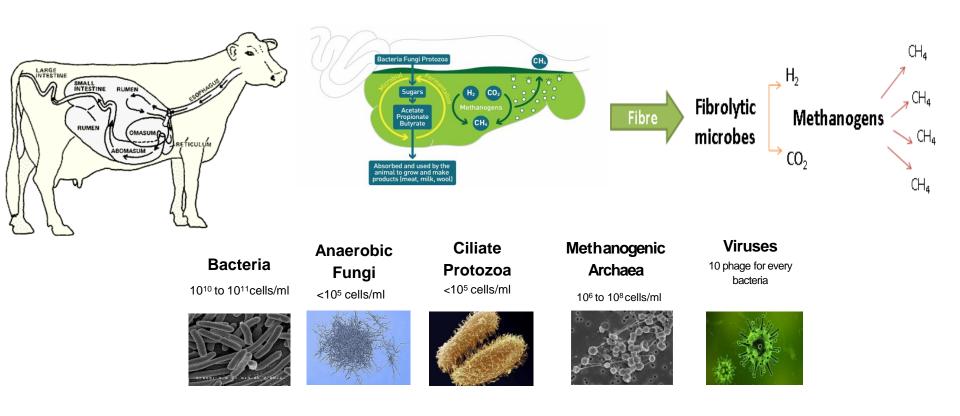


Euroopa Maaelu Arengu Põllumajandusfond: Euroopa investeeringud maapiirkondadesse

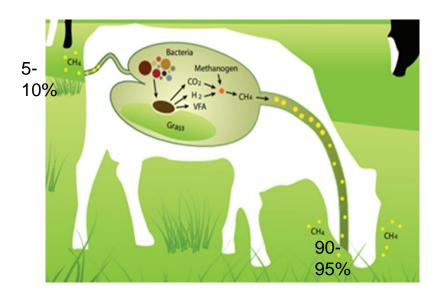
AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Introduction

- **Methane** is a potent greenhouse gas (GHG)
- Agriculture is responsible for 37% of Ireland's GHG emissions
- Methane accounts for ~70% of Irish Agri-GHG emissions (EPA, 2022)
 - Enteric fermentation (feed digestion) 62%
 - Stored slurries and manures 8%
- Ireland: Climate Action and Low Carbon Development Bill 2021
 - > 25% reduction in Agri-emissions by 2030
 - 10% reduction in ruminant derived methane



Ruminants


Ruminants - unique in their ability to convert cellulose in plant cell walls into high quality meat and milk protein for humans

Enteric methane emissions

- 2nd most important GHG implicated in global warming
- GWP₁₀₀ = 28
- Atmospheric half life 9-12 years
- Enteric methane from ruminant livestock production accountable for:
 - ~60% of Irish agricultural GHG emissions
 - 8-10 % from manure

Measuring Enteric Methane Output

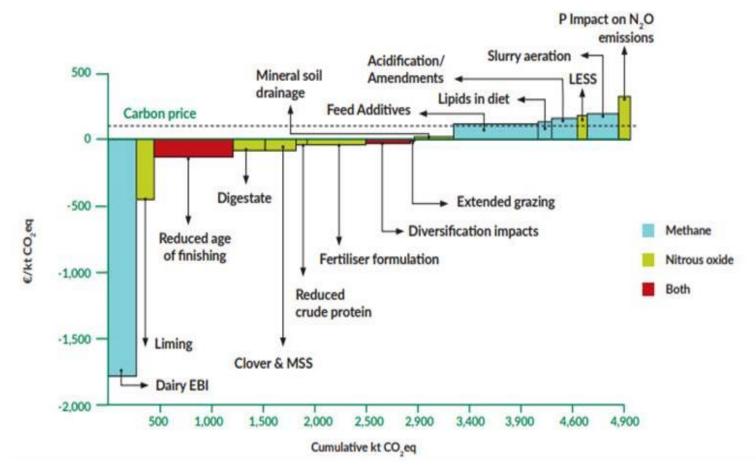
Respiration chamber

SF₆ tracer

GreenFeed system

Reporting methane output:

- Daily methane output (CH₄ g/ day)
- Methane yield (CH_4 g/ kg of DMI)
- Methane intensity (CH₄ g/ kg of carcass weight)

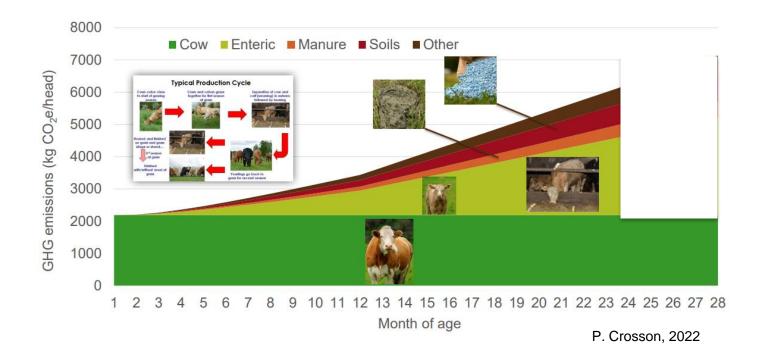

How are we going to reduce methane emissions from agriculture in Ireland?

- Improved management practices Farm efficiency
- Teagasc MACC
 - Reducing age of slaughter
- Grassland management
 - Significantly lower methane in pasture based settings
- Breeding strategies (Teagasc and ICBF)
 - Enhance feed efficiency and lower methane
 - Longer term strategy

Feed additives

Can they be delivered during grazing?

Marginal Cost Abatement Curve (MACC)


Food Vision Beef Group – Proposed Measures

Measure	GHG reduction (Mt CO ₂ e)
1. Improve live weight with earlier slaughter	0.57 – 0.82
2. Earlier age at first calving	0.05 - 0.10
3. Feed additives to mitigate methane	0.15 – 0.30
4. Replace 90% of CAN with Protected Urea	0.2
5. Reduce inorganic N use by 27-30%	0.26
6. Increase area in organic production to 180,000 ha	0.2
7. Breeding strategies – carbon sub-index and efficiency traits	0.1 - 0.3

FV Beef Group, 1.5 - 2.2 Mt CO₂e

Reducing finishing age

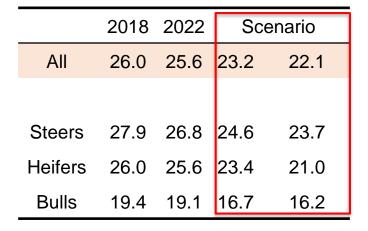
Reducing finishing age improves €€€

Table 3

Economic results (€/ha) of suckler beef steer-heifer production systems investigated by the Grange Beef Systems Model (GBSM).

	Scenario ^a												
	BASE	HCR	LCR	ECD	LCD	HRR	LRR	HADG	LADG	EF	LF	HIGH	LOW
Gross output value	1460	1627	1294	1478	1446	1469	1451	1570	1351	1355	1674	1738	1343
Concentrate feed	264	292	236	270	267	264	264	299	247	181	200	306	132
Grassland	181	207	157	189	170	181	181	206	158	161	383	207	229
Machinery hire	37	40	35	37	40	37	37	37	37	32	41	36	39
Silage making	142	149	136	138	154	142	142	146	138	132	186	139	176
Other ^b	127	131	123	126	129	128	127	127	127	127	139	129	135
Total variable costs	752	819	687	758	759	752	752	815	707	634	948	817	712
Gross margin	708	807	606	720	686	716	700	755	644	721	726	920	632
Total fixed costs	444	461	426	438	444	444	443	445	442	398	524	422	452
Net margin	264	346	180	282	242	272	257	309	203	323	253	498	180
COP/kg carcass (€) ^c	3.75	3.61	3.92	3.69	3.88	3.68	3.81	3.68	3.87	3.53	3.97	3.30	3.96

Scenario	Steers (mo)	Heifers (mo)
BASE	24	24
Early finishing (EF)	22	20
Late Finishing (LF)	30	28

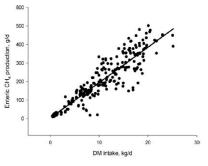

Taylor et al., 2020

Finishing age target - 2030

Direct Impact measures to mitigate Greenhouse Gas Emissions from the beef sector								
Measure	Estimated CO ₂ equivalent reduction	Estimated economic cost at farm level	Target GHG	Timeframe				
1. Improving live weight performance for beef cattle resulting in earlier slaughter ages, reducing age of slaughter by between 2.7 and 3.9 months on average, from 2018 average of 26 months to.22-23 months on average by 2030.	0.57 – 0.82 Mt CO ₂ eq	Estimated to have a positive economic effect at farm level with some potential loss in tonnage for the processing sector. Farm-level investment in weight recording and improvement in farm management practices are required	Methane	Short/Medium				

	:	2018	20	22
	#	Age (months)	#	Age (months)
Heifers	455225	26.0	479255	25.6
Steers	629128	27.9	676431	26.8
Bulls	185006	19.4	125836	19.1
Total	1269359	26.0	1281522	25.6

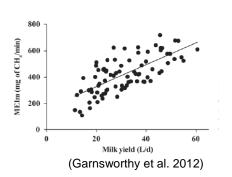
Current progress: finishing age


Slaughter age (months) 2018 v 2022 35.0 Mean slaughter age 🕴 12d 33.0 31.0 +5kg Heifers slaughter age 12d -2kg 28.4 29.0 27.6 +7kg 27.3 +4kg 26.5 27.0 26.2 26.0 25.6 25.1 Steers slaughter age 🖡 34d 25.0 23.0 -1kg Bulls slaughter age 🔸 10d 20.7 20.6 21.0 +2kg 18.5 19.0 17.0 15.0 Dairy-beef Suckler-beef Dairy-beef Dairy-beef Suckler-beef Suckler-beef Young bulls Heifer Steers 2018 2022

Animal breeding as a mitigation strategy

Benefits

- Methane output is heritable: h² of 0.19-0.30 (Donoghue et al., 2016)
- Permanent and cumulative reductions
- High mitigation potential for livestock systems unsuited to daily mitigation supplementation


Limitations

(Hristov et al., 2013)

Traits ¹	DME
DMI, kg	0.50***
Average daily gain, kg	0.31***
Carcass weight, kg	0.31***
Muscle depth, mm	0.13*
Fat depth, mm	0.14*
Intramuscular fat, %	0.03
G:F	-0.05
RFI	0.23***

(Smith et al., 2021)

Residual methane emissions

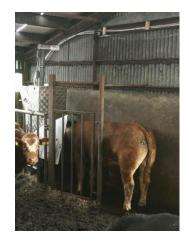
- Residual methane (RME) offers a more balanced approach to identify an animal's true physiological methane potential
 - Difference between an animal's predicted, based on DMI and bodyweight, and actual level of methane output
 - Similar concept to residual feed intake (RFI)
 - Helps negate influence of DMI and BW on methane output
- RME strongly correlated with daily CH₄ (g/day) but independent of DMI and BW (Bird-Gardiner et al., 2017)
- No genetic correlation of RME with DMI or BW (Manzanilla-Pech et al., 2016)
- Relationship with animal productivity?

1.2

ENVIRONMENTAL ANIMAL SCIENCE Effect of divergence in residual methane emissions on feed intake and efficiency, growth and carcass performance, and indices of rumen fermentation ar methane emissions in finishing beef cattle

ers,' David A. Kenny,' Stuart F. Kirwa

ICBF Progeny Performance Test Centre


- Irish Cattle Breeding Federation (ICBF)
 - Non-profit organisation in charge of the recording and processing of all data in Irish cattle breeding
- ICBF Progeny Performance Test Centre in Tully Co. Kildare
 - Performance test >600 beef cattle per year as part of national bull evaluation programme
 - · Various breeds and sires
- Cattle undergo minimum 100 day finishing period
 - Steers and heifers fed TMR (75% concentrates, 25% hay)
 - 30 day acclimatisation period
 - +70 day feed efficiency period
 - Measure feed intake (RIC), FCR, ADG, meat quality, fat scoring, carcass weight, KO%
 - Slaughtered in a commercial abattoir (approx. 1 hour drive from Tully)
- Enteric methane emissions estimated with GreenFeed system
 - 4 weeks of "training" followed by 21 days measurement period
 - 11-30 animals/GreenFeed

RME ranking and animal productivity

Production	High	Medium	Low	P-value
DMI (kg)	10.56	10.29	10.26	0.2829
ADG (kg)	1.42	1.38	1.34	0.1678
Initial Weight (kg)	472.9	477.43	473.16	0.8195
MetBW (kg)	111.22	111.52	110.73	0.8327
Final Weight (kg)	599.04	598.81	592.21	0.7022
Carcass Weight (kg)	328.22	334.71	331.82	0.4563
FCR	7.49	7.68	7.91	0.1257
RFI	0.16	0.03	0.1	0.4799

RME ranking and methane output

Methane	High	Medium	Low	P-value		
DMI (kg)	10.67	10.45	10.51	0.5862		
Weight (kg)	512.81	516.17	512.08	0.8707		
DME (g/day)	264.97ª	224.03 ^b	184.39 ^c	<.0001	\longrightarrow	30.4% difference
CO ₂ (kg/day)	8.75ª	8.29 ^b	8.07 ^c	<.0001		
RME (g/day)	37.95ª	-0.11 ^b	-40.34 ^c	<.0001		
MY (g/ kg DMI)	25.19ª	21.60 ^b	17.70 ^c	<.0001		
MADG (g/ kg ADG)	191.26ª	167.09 ^b	144.06 ^c	<.0001		
MI (g/ kg CW)	0.81ª	0.67 ^b	0.57°	<.0001	\longrightarrow	29.6% difference

• RME explained 45% of the variation in daily methane production

FARMERS JOURNAL

BEEF DAIRY SHEEP AGRIBUSINESS MACHINERY TILLAGE PEDIGREE BUILDINGS PROPERTY KNOWLEDGE HUB IRISH COUNTRY

ICBF publishes world-first methane data for breeding bulls

The move towards selecting bulls based on their progeny's methane output has begun with the publication of a new database.

ICBF to	est evaluations	s for	Gros	s Methane genomi	ic pro	edict	ed transm	itting	abiliti	ies		
Methane PTAs are provided for All Al Bulls - Beef & Dairy												
1,525 Tully	cattle with methane ph	nenotype	es and 3	3,348 animals with feed intake	phenoty	pes wer	e used in this evo	aluation.				
The most of	desirable PTAs are negat	tive indi	cating t	he progeny will emit less meth	ane. Th	e trait is	measured in gro	ıms per d	ay			
The data h	as been collected at the	Tully b	eef perf	ormance research centre								
©ICBF2020.	For more information please	e call 023	8820452	or log onto www.icbf.com								
Tag Name Main Breed Birth Year Owner Active Geby Methane relative to average Reliat						Methane Reliability	Num Progeny in	Avg Num records	Avg Age	Avg Methane		
		Breed	Year			Gebv		%	eval	per	progeny	of Progeny
CH4321	LAPON	CH	2015	NATIONAL CATTLE BREEDING CNTR	у	Gebv -5.76				per progeny 325	progeny 561	of Progeny 237
CH4321 AA4375	LAPON CARRIGROE NATIONWIDE 1450	СН		NATIONAL CATTLE BREEDING CNTR NATIONAL CATTLE BREEDING CNTR	у		sire	%	eval	per progeny		Progeny
		СН	2015		у	-5.76	sire Favourable	% 81	eval	per progeny 325	561	Progeny 237
AA4375	CARRIGROE NATIONWIDE 1450	CH	2015 2016	NATIONAL CATTLE BREEDING CNTR	у	-5.76 7.03	sire Favourable Unfavourable	% 81 81	eval 27 20	per progeny 325 241	561 528	Progeny 237 258
AA4375 LM4565	CARRIGROE NATIONWIDE 1450 KILMAGEMOGUE LEO	CH AA LM	2015 2016 2016	NATIONAL CATTLE BREEDING CNTR GENEIRELAND MATERNAL PROGR	у 	-5.76 7.03 -5.52	sire Favourable Unfavourable Favourable	% 81 81 80	eval 27 20 20	per progeny 325 241 309	561 528 514	Progeny 237 258 248
AA4375 LM4565 CH2000	CARRIGROE NATIONWIDE 1450 KILMAGEMOGUE LEO COOM INDURAIN	CH AA LM CH	2015 2016 2016 2013	NATIONAL CATTLE BREEDING CNTR GENEIRELAND MATERNAL PROGR DOVEA GENETICS	у у у	-5.76 7.03 -5.52 10.03	sire Favourable Unfavourable Favourable Unfavourable	% 81 81 80 77	eval 27 20 20 19	per progeny 325 241 309 241	561 528 514 534	Progeny 237 258 248 240

Methane emissions 5 Star animals

Terminal Index avg euro value	CH₄ g/d	CO₂ g/d	DMI kg	CH₄ g/kg	ADG kg/d	Final LW kg	Carcass wt kg	Carcass Conformation	Age at slaughter (d)	Commercal beef value (€)
5 star	218	9146	11.26	19.58	1.30	647	385	10.66	573	139
140								U=/U-		
4 star	240	9120	11.24	21.94	1.33	657	381	10.358	582	120
119.89								U-/U=		
3 star	248	9359	11.85	21.107	1.39	666	377	9.78	584	94
93.107								R+/U-		
2 star	255	9570	12.43	20.697	1.44	660	362	8.869	577	60
64.7								R=/R+		
1 star	254	9231	12.32	21.51	1.44	644	349	8.218	595	26
								R=		

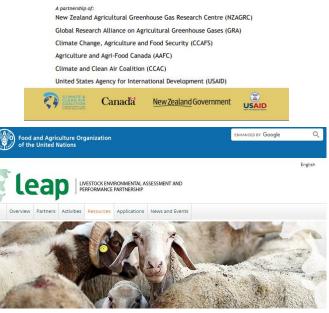
International reports on feed additives

Dr Roger Hegarty NZAGRC

- Only two of the additives evaluated delivered over 20% mitigation
 - Bovaer (3-NOP)
 - Asparagopsis (red algae)
 - Nitrate (~10% reduction)

Constraints with feed additives:

- 'Insufficient evidence of a cobenefit of increased production'
- Rely on additives mixed into a total mixed ration – fed continuously
- Extensive or grazing systems?


TAG FAO LEAP Partnership 2022

'more research is needed to develop, adapt, and evaluate antimethanogenic strategies for grazing systems' (Beauchemin et al., 2022).

An evaluation of evidence for efficacy and applicability of methane inhibiting feed additives for livestock

November 2021

What do we want from a Feed Additive?

Must Have

- Consistent methane reduction potential
- Mechanism of delivery to the animal
- Capable of counting in the national inventory
- No food safety/residue implications
- No negative performance effects and palatability

Desirable

- Low Cost
- Increased performance benefits
- Natural origin
- Potential for combination with other solutions

- 'METH-ABATE' Development of novel farm ready technologies to reduce methane emissions from pasture based Irish agricultural systems
- Feed additives to mitigate methane emissions monitoring their effects on animal productivity
 - Bovaer (3-NOP)
 - Seaweeds and seaweed extracts
 - Lipids (e.g., linseed oil, olive feed)
 - Novel oxidising methane inhibitors (RumenGlas)
 - Commercial products (e.g., Agolin, Mootral)

- Formulations for **slow release** options at pasture
- Additives to reduce methane from stored manure/slurry
- Nutritional and toxicological composition of meat and milk to confirm consumer safety – no residues
- Life Cycle (LC) Analysis and farm level cost effectiveness

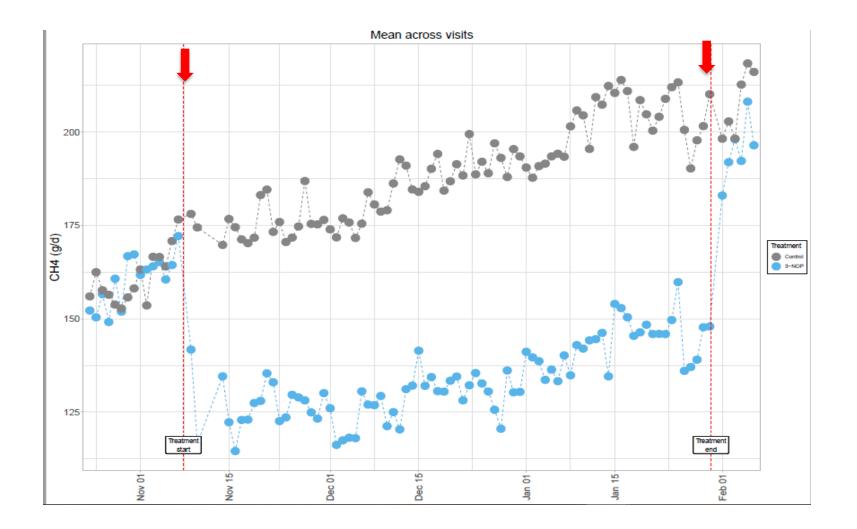
Bovaer (3-NOP) Beef Trial

- Efficacy of 3-NOP in growing beef cattle
 - EFSA approval
- Teagasc Grange (Sept 2021- Jan 2022)
- 3-NOP vs control n=34
- Acclimatisation period (4 weeks) +12 wk supplementation, TMR diet
 - 50% forage (silage)
- Dairy/beef cross animals
- Aberdeen Angus & Hereford
 - \leq 6 months of age at the start of experiment
- DMI, daily methane output, daily live-weight gain
- Rumen fluid collected on 3 separate occasions
 - NH₃, VFA, microbiome analysis

Results

The effect of 3-nitrooxypropanol on body weight, ADG and G: F in young growing beef cattle offered a 50: 50 forage: concentrate diet.

	Treatm	ent ¹		<i>P</i> -value
	Control	3-NOP	SEM	Treatment
Dry matter intake ²				
Total DMI kg d ⁻¹	6.31	6.19	0.157	0.577
PMR DMI kg d ⁻¹	5.86	5.73	0.158	0.579
GreenFeed bait kg d-1	0.46	0.45	0.010	0.615
GreenFeed visits	3.00	2.98	0.055	0.777
Start BW ² , kg	190.0	189.3	5.84	0.667
Final BW ² , kg	308.7	308.2	7.66	0.890
Total weight gained, kg	119.4	118.2	2.93	0.737
ADG, kg	1.42	1.41	0.035	0.737
G:F	0.23	0.23 0.23		0.638


Results

The effect of 3-nitrooxypropanol on gaseous emissions in young growing beef cattle offered a 50:50 forage: concentrate diet.

	Treat	ment ¹		P-value				
	Control	3-NOP	SEM	Treatment	Time-point	Interaction		
Gas emissions								
CH ₄ , g d ⁻¹	182.5	126.6	2.36	< 0.001	< 0.001	< 0.001		
CH ₄ , g kg ⁻¹ total DMI	28.6	20.8	0.381	< 0.001	< 0.01	0.380		
CH ₄ , g kg ⁻¹ BW d ⁻¹	0.76	0.53	0.010	< 0.001	< 0.001	0.060		
H ₂ , g d ⁻¹	1.12	3.67	0.096	<0.001	< 0.001	0.567		
H ₂ , g kg ⁻¹ total DMI	0.20	0.61	0.025	< 0.001	0.858	0.168		
CO ₂ , kg d ⁻¹	5.65	5.69	0.056	0.421	0.391	0.203		
CO ₂ , kg kg ⁻¹ total DMI	0.922	0.943	0.0195	0.423	0.391	0.203		

3-NOP on methane

Effect of feed additives on methane emissions *in vitro* using RUSITEC

Mmol CH₄/day	<i>P</i> -Value
-60%	<.0001
-67%	<.0001
-41%	0.0078
-68%	<.0001
-7%	0.9789
-36%	0.0044
-15%	0.0217
-26%	0.0317
	-67% -41% -68% -7% -36% -15%

1 - 1% inclusion rate a. harvested in Summer; bromoform = 4.35 mg/g DM

2 – 4% inclusion rate

3-25% inclusion rate

b. harvested in Autumn; bromoform 6.84 mg/g DM

eagasc

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Roskam et al., 2022 In review; O'Donnell et al. In Preparation

Lipids

- Plant oils enriched in PUFA \downarrow CH₄
- Mode of action:
 - Inhibition of methanogens and protozoa
 - Alteration of VFA profiles
 - Reduction in feed fermented
 - Biohydrogenation of FA Sequestering H₂
- Reduction in DMI at inclusion >5%
- 1% ↑ fat = 3.77% ↓ CH₄ g/d
 - 3.3% RSO ↓ CH₄ 19% (Brask et al., 2013)
 - 6% SO ↓ CH₄ 39% (Jordan et al., 2006)
 - 3.4% LO ↓ CH₄ 16% (Boland et al., 2020)

Effects of offering beef bulls linseed oil, seaweed or a seaweed extract on intake and animal performance

Item	CON	LSO	SW	EX	SEM	<i>P</i> -value
DMI, kg/d	7.14	6.84	7.30	6.92	7.050	0.064
Start weight, kg	380	380	377	377	4.6	0.9254
Mid weight, kg	426	423	426	418	5.4	0.6726
End weight, kg	463	459	463	447	6.1	0.1916
ADG, kg/d	1.09 ^a	0.96 ^{ab}	1.06 ^{ab}	0.92 ^b	0.045	0.0326
FCR ¹	6.66	7.30	7.07	7.95	0.353	0.0949

^{a,b} Means within a row with different superscripts differ significantly (P<0.05)

Roskam et al., drafting

Effects of offering beef bulls linseed oil, seaweed or a seaweed extract on enteric gaseous emissions

Treatment								
Item	CON	LSO	SW	EX	SEM	<i>P</i> -value		
CH _{4;} g/d	208.1ª	171.2°	201.1 ^{ab}	194.4 ^b	3.34	<.0001		
CH _{4;} g/kg DMI	29.87ª	24.93 ^b	28.22ª	27.96 ^a	0.573	<.0001		
CH _{4;} g/kg BW	0.498ª	0.400 ^c	0.481 ^{ab}	0.464 ^b	0.0091	<.0001		
CH _{4;} g/kg ADG	196.8 ^{ab}	179.2 ^b	197.3 ^{ab}	219.2 ^a	9.24	0.0236		
H _{2:} g/d	0.535ª	0.424 ^b	0.539 ^a	0.500 ^{ab}	0.024	0.0037		
$CO_{2;} g/d$	6892.8 ^{ab}	6470.0 ^b	6911.2 ^a	6892.8 ^{ab}	119.37	0.0289		

^{a,b,c} Means within a row with different superscripts differ significantly (P<0.05)

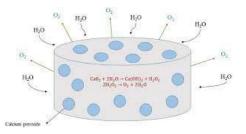
Roskam et al., 2023 drafting

Effect of feed additives on methane emissions in beef cattle

- Compared to unsupplemented control diet:
 - **Brown Seaweed** supplementation tended to $\downarrow CH_4 g/d (\downarrow 4\%)$
 - Seaweed extract ↓ CH₄ g/d (↓7%), no effect on CH₄ yield or intensity
 - Linseed oil supplementation: \CH₄ g/d (\18%), CH₄ yield (\14%)
 - DMI (
 5%) and ADG (
 17%) reduced by linseed oil supplementation

SEASOLUTIONS

• Residual effects

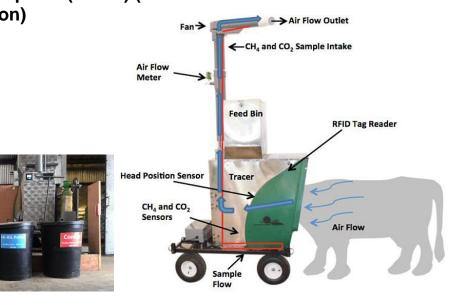

Roskam et al., drafting

Oxidising methane inhibitors (OMI)

- What are they?
 - Peroxide based compounds
 - » Calcium peroxide (CaO₂)
 - » Based on the control of rumen oxidation-reduction potential (ORP)
- Mechanism of action
 - 1. Inhibit methanogens
 - » \uparrow ORP to favourably alter rumen fermentation pathway and suppress methanogenesis
 - » Selectively and temporarily inhibiting methanogens
 - 2. Encourage microbial pathways that divert electrons from H_2 and consume $H_2 \rightarrow trap energy in biomass$

Effects of CaO₂ in beef cattle

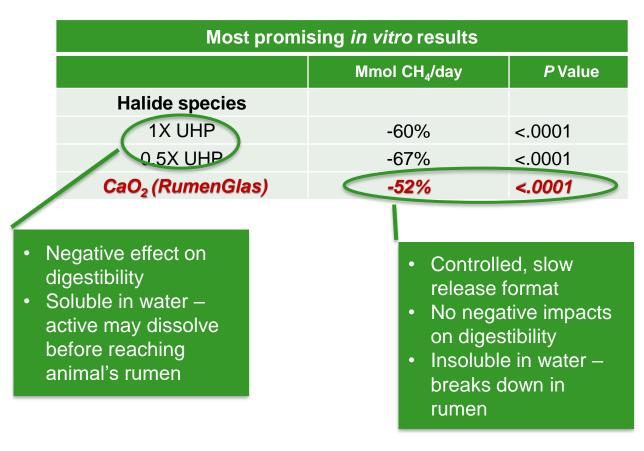
- 72 dairy X bulls
 - » ~16 months old/450kg
 - » 4 dietary treatments (n=18)
 - » 70 day feeding period
 - +7d baseline
 - +7d residual


Diet

- 60:40 forage:concetrate
- Barley based coarse ration with additive included
 - Fed 2x/d (AM + PM)
- 110% of previous days silage intake
- ~1kg bait feed from GreenFeed

Treatments

- Control (No supplementation)
- Low (1.35%) (4.35% of ration)
- High (2.25%) (7.25% of ration)
- High pellet (2.25%) (7.25% of ration)



In vitro screening and development of OMI

- Short-lived reactive oxygen halide species
 - 1X LARS
 - 0.5X LARS
 - 0.25X LARS
 - 1X UHP
 - 0.5X UHP
 - 0.25X UHP
 - 0.5X MgO₂
- Peroxide based compounds
 - CaO2 (RumenGlas)
 - MgO2
 - All assessed at various inclusion rates to ensure no negative effects on digestibility

Sheep experiment – key outcomes

Calcium Peroxide - RumenGlas

- No negative effects on LWG or intakes
- 14% reduction in g CH₄/kg BW
- 20% increase in ORP in same treatment

O'Donnell et al., In Preparation

Effects of differing inclusion rate and delivery format of CaO₂ on intake, animal performance and ultrasonically measured muscle and back fat depth

Treatment							
Item	CON	LO	HC	HP	SEM	<i>P</i> -value	
DMI, kg/d	9.27 ^a	9.73 ^a	8.23 ^b	9.17 ^a	0.206	<.0001	
Start weight, kg	476	477	472	473	3.4	0.65	
Mid weight, kg	514	521	518	516	3.7	0.51	
End weight, kg	556	564	550	553	5.0	0.1615	
ADG, kg/d	1.32	1.41	1.30	1.30	0.060	0.4836	
FCR ¹	7.14	7.13	6.56	7.15	0.281	0.3554	
Ultrasound measurements (mm)							
Lumbar fat	2.99	2.95	2.80	3.02	0.106	0.47	
Rump fat	3.99	3.95	4.38	3.62	0.222	0.12	
Muscle depth	55.0	56.5	54.0	55.8	0.77	0.14	

^{a,b} Means within a row with different superscripts differ significantly (P<0.05) ¹ kg of DM/kg of gain

Roskam et al., in prep

Effects of differing inclusion rate and delivery format of CaO₂ on enteric gaseous emissions

Ireatment								
Item	CON	LO	HC	HP	SEM	P-value		
CH _{4;} g/d	238.3 ^a	197.7 ^b	171.3 ^c	172.8 ^c	3.25	<.0001		
CH _{4;} g/kg DMI	26.08 ^a	20.70 ^b	20.84 ^b	18.99 ^b	0.583	<.0001		
CH _{4:} g/kg BW	0.467ª	0.383 ^b	0.332 ^c	0.336 ^c	0.0062	<.0001		
CH _{4:} g/kg ADG)182.6ª	145.7 ^b	133.1 ^b	135.6 ^b	5.76	<.0001		
H _{2;} g/d	0.590ª	0.380 ^b	0.382 ^b	0.404 ^b	0.0176	<.0001		
CO _{2:} g/d	8231.8ª	7895.8 ^{ab}	7309.0 ^c	7664.4 ^{bd}	147.35	0.0003		

^{a,b,c} Means within a row with different superscripts differ significantly (P<0.05)

Roskam et al., 2022 In review

Effects of differing inclusion rate and delivery format of CaO₂ on rumen fermentation parameters

		-	itment			Da	ау		P va	alue
Item	CON	LO	HC	HP	SEM	D32	D73	SEM	Trt	Day
рН	6.89 ^a	7.14 ^b	7.17 ^b	7.12 ^b	0.044	7.06	7.10	0.030	<.0001	0.27
NH ₃ -N, mg/L	98.04 ^a	81.57 ^b	77.96 ^b	70.90 ^b	4.986	96.40	67.84	3.400	0.01	<.0001
Lactic acid	0.185	0.160	0.221	0.158	0.0176	0.190	0.172	0.012	0.05	0.30
TVFA mM	118.93 ^a	99.15 ^b	93.26 ^b	105.26 ^{ab}	4.881	115.63	92.67	3.344	0.01	<.0001
Acetate	75.95	74.94	72.94	74.58	0.983	76.76	72.45	0.673	0.19	<.0001
Propionate	12.94 ^a	15.71 ^b	19.13 ^c	16.88 ^{bc}	0.672	15.58	16.75	0.461	<.0001	0.08
Butyrate	10.99 ^a	8.58 ^b	7.70 ^{bc}	7.21°	0.330	7.47	9.80	0.226	<.0001	<.0001
Valerate	1.00	1.08	1.14	1.21	0.059	1.23	1.00	0.041	0.08	<.0001
A:P ratio	8.53 ^a	5.40 ^{ab}	4.56 ^b	7.97 ^{ab}	0.979	8.59	4.64	0.671	0.01	<.0001

^{a,b,c} Means within a row with different superscripts differ significantly (P < 0.05)

Roskam et al., 2022 In review

Effects of differing inclusion rate and delivery format of CaO₂ on animal performance and diet digestibility

Treatment								
Item	CON	LO	HC	HP	SEM	P-value		
DMI, kg/d	8.37	8.00	7.97	8.02	0.374	0.855		
BW, kg	568	572	566	569	6.5	0.932		
DMI/kg BW	0.015	0.014	0.014	0.014	0.0664	0.841		
Faeces, kg/d	1.84	2.13	2.10	2.16	0.128	0.311		
Faecal Ca, %	2.96 ^a	4.61 ^b	5.41 ^c	5.67°	0.116	<.0001		
DM								
Digestibility, %								
Dry matter	78.12 ^a	73.44 ^b	73.63 ^b	72.99 ^b	0.667	0.001		
Organic matter	80.41 ^a	76.99 ^b	77.71 ^b	77.28 ^b	0.615	0.008		
NDF	75.88 ^a	71.89 ^{ab}	72.00 ^{ab}	69.68 ^b	0.949	0.006		

^{a,b} Means within a row with different superscripts differ significantly (P<0.05)

Effect of *RumenGlas* on methane emissions and performance in beef cattle

Preliminary results:

- Compared to unsupplemented control diet:
- RG (High) reduced methane (g/d) ↓30%
 Feed intake reduced by 14% possible formulation or palatability issues
- RG (Low) reduced methane (g/d) by ↓18%
 18% increase in weight gain (ADG)
- RG PELLET: reduced methane (g/d) ↓28%
 No negative effect on intake and improved weight gain (18%)

Advantages : Ease of delivery 2x/d feeding in a pellet

Roskam et al., In Preparation

Current and Future work

- Dairy grazing feed additive studies lack of persistency
 - Effective only for 3 hours
- Development of new formulations for extensive/grazing application
- Mechanism of action VFA and rumen microbiome studies
- Sensory and residue analysis (meat and milk)
- Cost effectiveness (affordability) and life cycle analyses
- Delivery on farm uptake by farmers will require industry and state incentives
- Incorporation into national inventories (EPA)

METH-ABATE - Development of novel farm ready technologies to reduce methane emissions from pasture based Irish agricultural systems

- Feed additives to mitigate methane emissions monitoring their effects on animal productivity (cattle and sheep)
 - 3-NOP, seaweeds, oils, oxidising CH₄ inhibitors,
- Encapsulation for **slow release** options at pasture
- Nutritional and toxicological composition of meat and milk to confirm consumer safety – no residues
- Teagasc Life Cycle (LC) Analysis models
- Farm level cost effectiveness will be evaluated national farm survey.

- Promising research currently on-going to develop mitigation strategies
 - Feed additives constant supply in rumen, issue in pasture based systems
 - 3-NOP and oxidising CH₄ inhibitors most promising to date
 - Red seaweed supply and residue issues
 - Oils risk reduced DMI, digestibility > 5%
- Slow release options essential for pasture based systems
 - DSM developing a slow release option initial prototypes able to extend methane reduction from feeding time to 6-8hrs with 1 small dose (Muetzel et al., 2019).
 - Oxidising CH₄ inhibitors: Slow-release bolus for extensive/pasturebased application
 - Being developed by NUIG and GlasPort Bio (Meth-Abate)
 - Solubility kinetics active for periods of weeks/months
 - Layered encapsulation to extend release rates

Acknowledgements

Prof Sinead Waters

Prof David Kenny

Prof Vincent O'Flaherty

Dr Maria Hayes

Emily Roskam

Dr Paul Smith

Caroline O'Donnell

Alison Graham

Funding: Irish Department of Agriculture, Food and the Marine (RSF) contract no. 2019R479) Science Foundation Ireland (19/FFP/6746) EU ERA-NET (SeaSolutions: 696231) EU Horizon: MASTER (Contract no. 818368)

